CHANGEMENT CLIMATIQUE ET EFFET D'ICU

LA VULNÉRABILITÉ DE L'ÎLE-DE-FRANCE À LA CHALEUR URBAINE, ENJEU DE SANTÉ PUBLIQUE ET CAPACITÉS D'ADAPTATION

Atelier Adaptation du Teddif / 20 mars 2018

LES ENJEUX SANITAIRES ET SYSTÉMIQUES LIÉS AUX FORTES CHALEURS ET À LA POLLUTION DE L'AIR, UNE VULNÉRABILITÉ DÉJÀ ACTUELLE

Canicule de 2003 = vague de chaleur la plus importante depuis 1947

= 15 000 décès en excès en France

Source: INSERM; Santé
Publique France (direction
santé environnement);
ORS Île-de-France

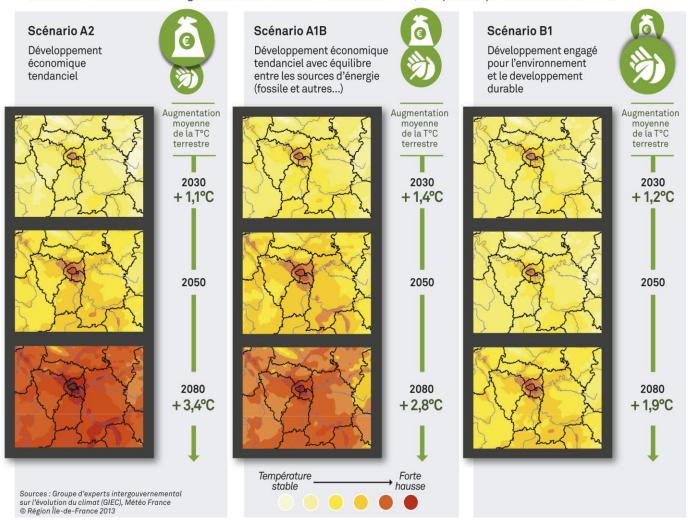
= 5 000 décès en excès en ldf

= surmortalité Val-de-Marne : + 171%

le centre de l'agglomeration, mais touchant bien, à des deprés divers, l'ensemble de l'île-de-France de l'île-de-France de l'île-de-France de 21 de 2003 : ratio lisse de sumortalité par canton ou 21 à monte de 21 de 2003 d

(canicules France, 2 000 décès en 2006, 3 300 décès en 2015)

En 2100 à Paris, selon Météo-France, on pourrait connaître :


- un été sur deux aussi chaud que celui de 2003,
- 10 à 25 journées d'alerte canicule versus 1 jour/an en moy. actuellement

A cette situation s'ajoute le phénomène de l'îlot de chaleur urbain (ICU)

Ainsi, durant les canicules de 2003 et 2015, il a fait plus chaud à Paris qu'en région parisienne, jusqu'à 10°C d'écart entre le centre de Paris et la forêt de Fontainebleau.

Les scénarios de changements climatiques en Île-de-France

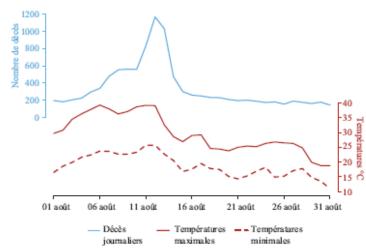
Les cartes sont obtenues en superposant la variation (écart à la simulation de référence) projetées par le modèle ARPEGE-Climat (résolution 50km) et la climatologie de référence à échelle fine (résolution 1km, interpolation par la méthode AURELHY).

Paris, la petite couronne, la région ont font l'objet de travaux de recherche depuis 10 ans sur énergie-climat, avec Météo-France notamment : EPICEA, MUSCADE, MAPUCE...

2010/2011 Elaboration du PRC appui CRIF

LES ENJEUX SANITAIRES ET SYSTÉMIQUES LIÉS AUX FORTES CHALEURS ET À LA POLLUTION DE L'AIR, UNE VULNÉRABILITÉ DÉJÀ ACTUELLE

L'EFFET D'ÎLOT DE CHALEUR URBAIN

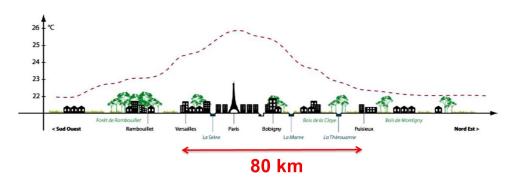

Les ICU sont la cause d'une forte surmortalité en période caniculaire (InVS) :

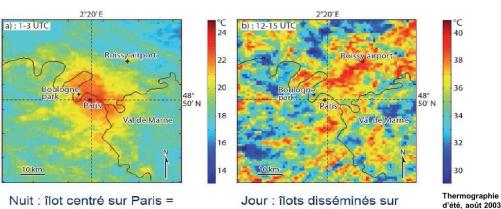
- ⇒ repos nocturne et récupération empêchés
- ⇒ risque de surmortalité 2 fois plus élevé chez les personnes exposées à la chaleur, en particulier <u>la nuit</u> et lorsque la canicule persiste une semaine ou plus

Avec des facteurs de risque :

- individuel (perte d'autonomie, pathologies préexistantes...)
- liés à l'environnement (sous les toits, dans un quartier ICU...)

Sources : Météo France, CépiDc, exploitation ORS Ile-de-France, 2009


llot de chaleur urbain (ICU) : la différence Ville / Campagne


Contraste de température de l'air

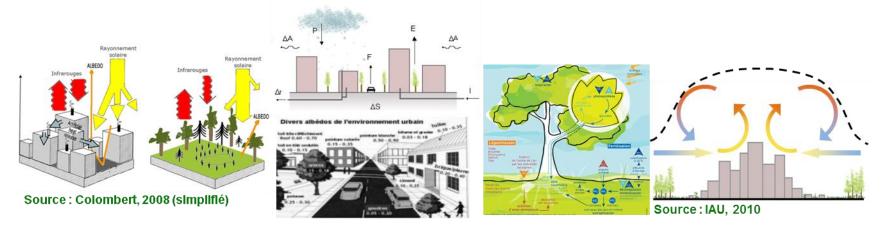
ICU « métropolitain »

mais aussi contrastes locaux : îlot de chaleur / îlot de fraicheur

Période de canicule => LA NUIT, enjeu de santé publique

Nuit : îlot centré sur Paris = revêtements absorbants + densité urbaine qui piège la chaleur

magnitude d'environ 8°C


Jour : îlots disséminés sur zones industrielles = propriétés des surfaces

nombreuses anomalies thermiques

32

Les facteurs intervenant dans le phénomène ICU

- ⇒ Perturbations radiatives (ombres, piégeage radiatifs…)
- ⇒ Perturbations thermiques (matériaux, surfaces disponibles...)
- ⇒ Perturbation hydrologiques (imperméabilisation, égouts…)
- ⇒ Carence et comportement de la végétation
- ⇒ Rugosité urbaine / ventilation naturelle, turbulences, brises
- **⇒** Sources de chaleur anthropiques de la ville

LES ENJEUX SANITAIRES ET SYSTÉMIQUES LIÉS AUX FORTES CHALEURS ET À LA POLLUTION DE L'AIR, UNE VULNÉRABILITÉ DÉJÀ ACTUELLE

<u>Vague de chaleur + effet aggravant d'ICU :</u>

=> Risques sanitaires (canicule, stress thermique et hydrique)

=> Dégradation de la qualité de l'air :

L'ICU et la forte chaleur sont des facteurs aggravant de la pollution atmosphérique et de ses effets sur l'homme et sur les milieux

- air extérieur : aggravation des phénomènes de smog (T°, stagnation air) avec pollution à l'ozone
- air intérieur : émanation de substances toxiques

=> Perturbation du confort thermique (activités économiques, transports)

=> Pression sur les ressources Energie / Eau

pour les besoins de rafraîchissement, de réfrigération et d'eau potable

- hausse probable de la demande en énergie (climatisation, réfrigération)
 - → chaleur anthropique (extraction) et → GES (fluides frigorigènes)
- hausse probable des demandes en eau (plantations, aires rafraîchissement)

« Aléa »

Probabilité d'aggravation locale d'un effet du changement climatique

- Aléas liés à des phénomènes météorologiques très <u>divers</u> (sécheresse, vague de chaleur voire canicule, pluie d'orage, tempête...)
- Aléas <u>événementiels</u> (crue d'orage, incendie de forêt...) ou <u>diffus</u> (retraitgonflement des argiles, pression sur la ressource en eau...)

« Sensibilité »

Présence de personnes ou de biens sensibles à cette aggravation locale

- Enjeux ponctuels (personnes, bâtiments, activités sociales, activités économiques...) ou systémiques (réseaux d'approvisionnement en eau, en énergie...)
- Enjeux souvent « multi-exposés »

« Difficulté à faire face »

Déficit potentiel de ressources pour faire face au risque climatique

- Difficultés à faire face <u>avant</u>, <u>pendant</u> ou après
- Difficultés liées à un déficit de ressources individuelles ou collectives (notamment « territoriales » : organisation, services, aménités...)
- Difficultés liées à un déficit de ressources économiques, culturelles et/ou sanitaires...

Existence d'un risque climatique

Vulnérabilité à un risque climatique

Birkmann et al. (2011)

ÉVALUATION DE LA VULNÉRABILITÉ À LA CHALEUR URBAINE À L'ÎLOT

INDICATEURS DE VULNÉRABILITÉ LORS D'UNE VAGUE DE CHALEUR

"Aléa"

Effet d'îlot de chaleur urbain (ICU) (élévation des températures en ville)

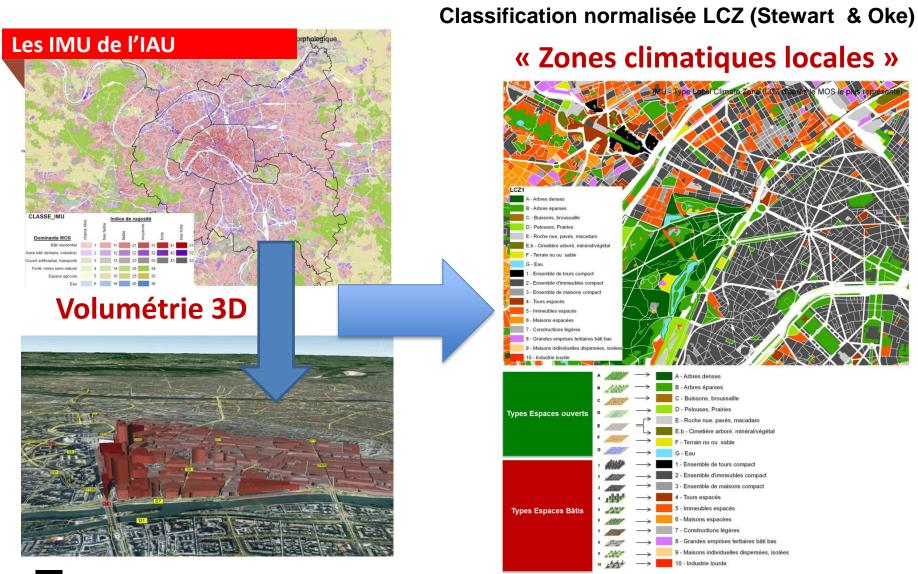
- Nombre de surfaces bâties
- Ventilation de l'îlot
- Obstacle à la vue du ciel
- Rues étroites bordées d'immeubles hauts
- Ombrage lié aux arbres
- Imperméabilisation des sols
- Propriétés thermiques des matériaux
- Présence de végétation dans l'îlot
- Proximité de l'îlot à un bois ou une forêt
- Présence d'eau dans l'îlot
- Proximité de l'îlot à un cours ou plan d'eau
- Réfléchissement de la lumière (albédo)
- Chaleur anthropique (transports, énergie, industrie)
- "Nuit tropicale (>20°C)" lors de la canicule 2003

"Sensibilité"

Fragilité des biens et personnes lors d'une canicule

- Part de la population sensible par l'âge
- Maison de retraite
- Densité d'habitants
- Densité d'occupation des logements
- Densité d'emplois
- Présence majoritaire de bâti construit entre 1949 et 1974 (avant règlementation thermique)
- Dégradation de la qualité de l'air en 2003 (ozone)

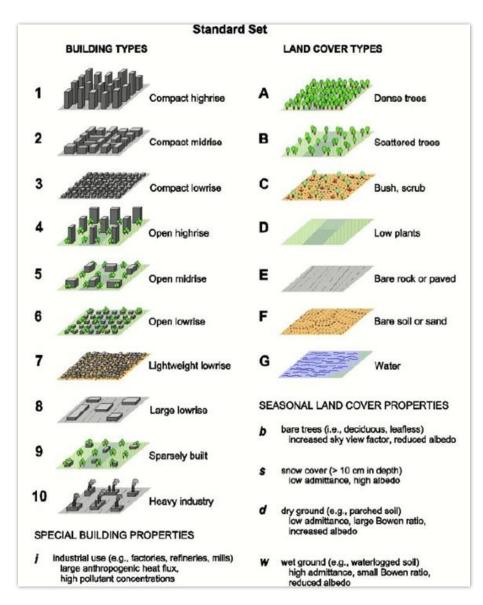
"Difficulté à faire face"


Déficit potentiel des ressources locales face au risque de canicule

- Part des ménages à bas revenus
- Accessiblité à un medecin généraliste de proximité
- Proximité aux urgences hospitalières
- Absence d'arbres dans l'îlot
- Carence en espaces verts et boisés publics

des îlots IMU, aux types LCZ, aux Propriétés LCZ, à l'effet d'ICU

Aggravation de l'aléa « Vague de chaleur » par l'effet d'ICU (Source : IAU île-de-France)



10

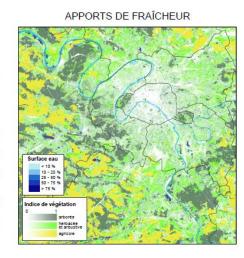
17 types LCZ

(Stewart & Oke)

et 10 propriétés LCZ pour évaluer l'effet d'ICU pour chaque îlot (« pâté de maisons »)

Référentiel des Zones climatiques Locales « LCZ »

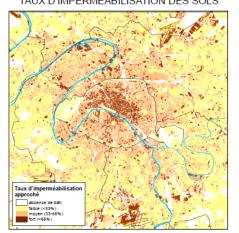
Attribution du type de Zone climatique locale de la classification normalisée LCZ de Stewart & Oke à chaque îlot IMU


Zones climatiques locales « LCZ »

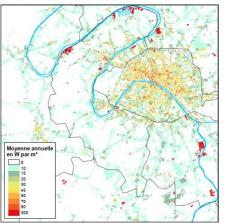
PROPRIÉTÉS LCZ

5 exemples

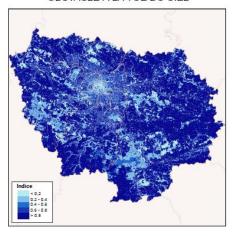
Détermination des 10 propriétés LCZ pour évaluer l'effet d'ICU à partir des caractéristiques de chaque îlot (base IMU)

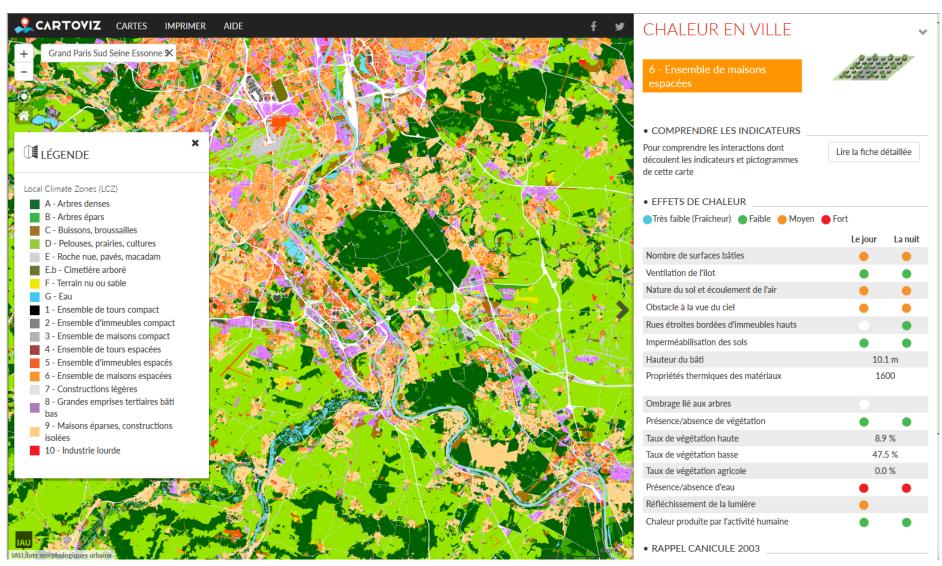


CALCUL DES PROPRIÉTÉS LCZ

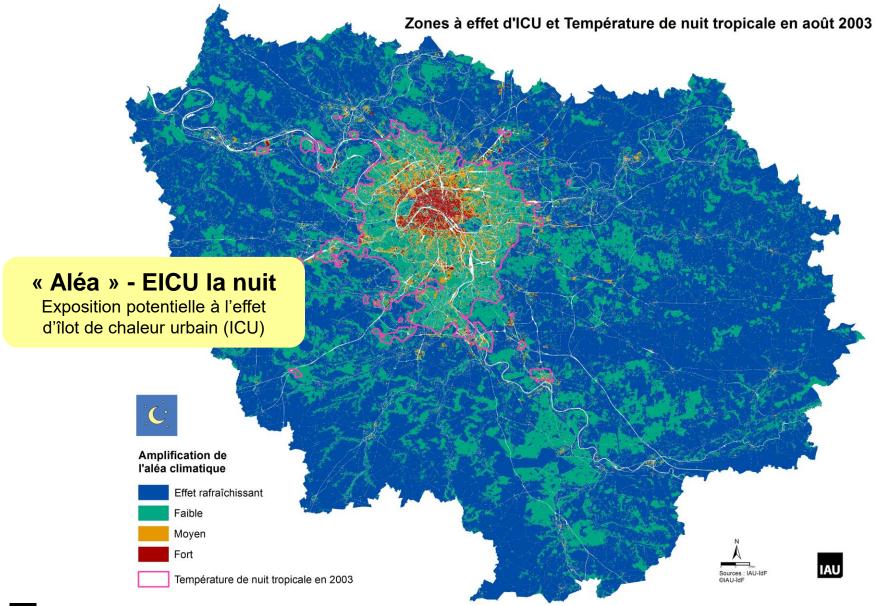

Après l'étape de classification des îlots urbains en LCZ, le calcul « théorique » de **10 propriétés** déterminantes dans la genèse et l'intensité de l'effet d'îlot de chaleur urbain (ICU) est opéré :

- 7 propriétés sont calculées directement ou indirectement à partir des attributs de l'IMU (caractéristiques géométriques et nature des surfaces).
- 2 propriétés (radiatives et thermiques) sont renseignées par des valeurs forfaitaires selon la typologie LCZ définie par Stewart et Oke.
- 1 propriété (flux de chaleur anthropogénique) dont la valeur est issue d'un indicateur composite (présence d'activité industrielle, émissions linéaires de CO2 du trafic routier et consommation énergétique du bâti tertiaire).

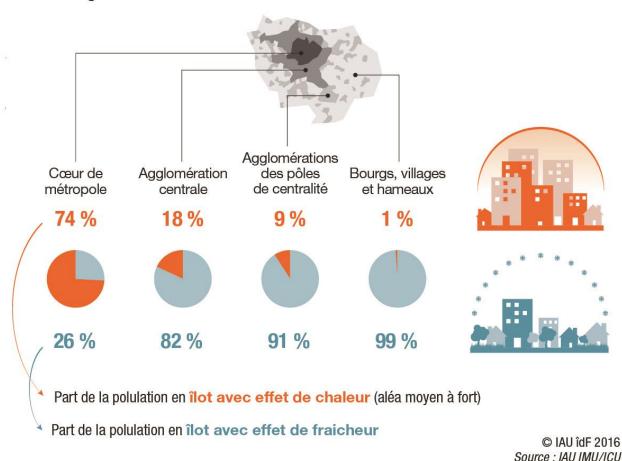

TAUX D'IMPERMÉABILISATION DES SOLS

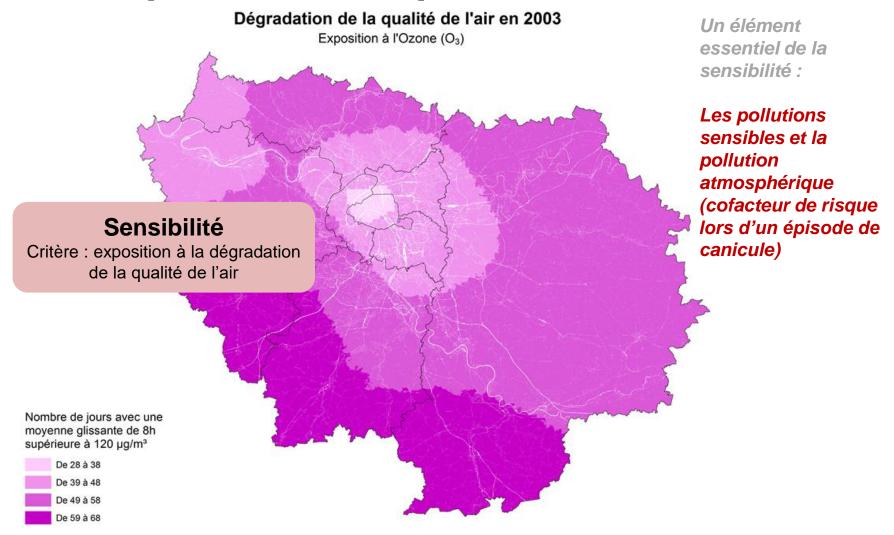


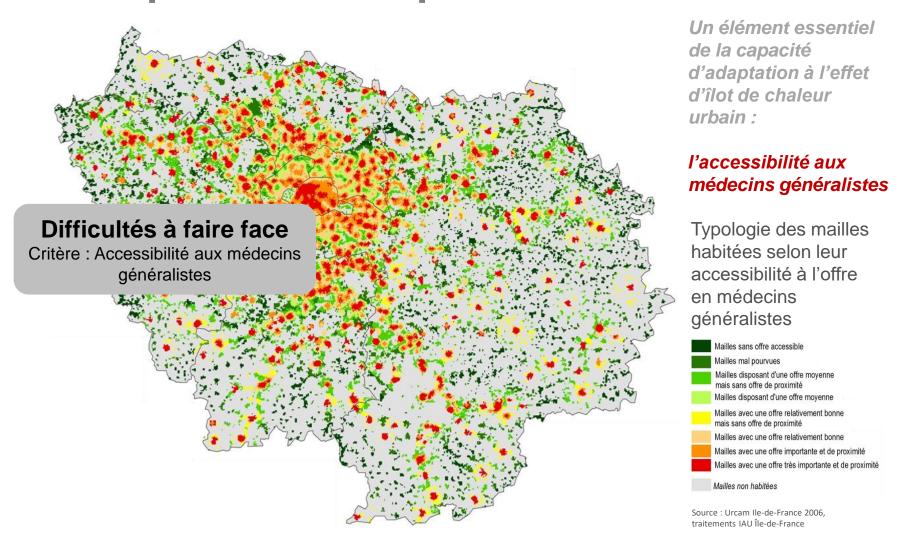
FLUX DE CHALEUR ANTHROPOGÉNIQUE

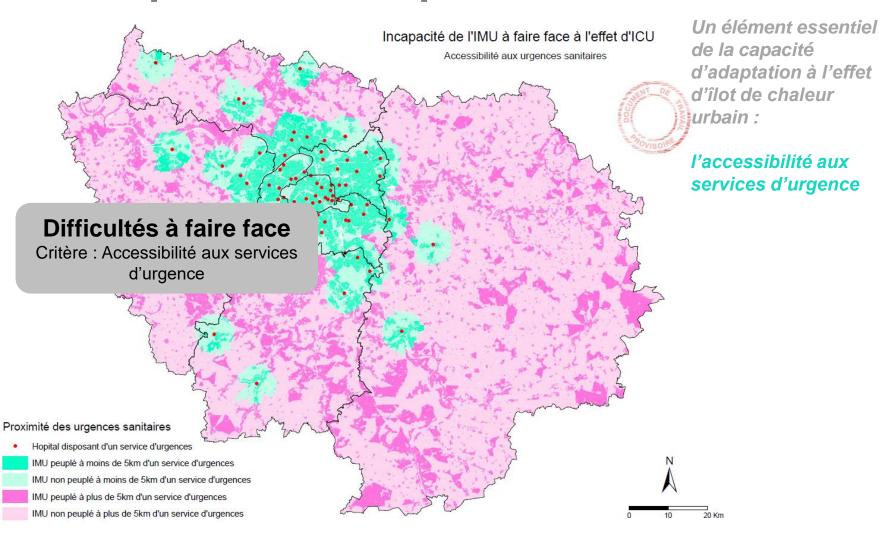


OBSTACLE À LA VUE DU CIEL

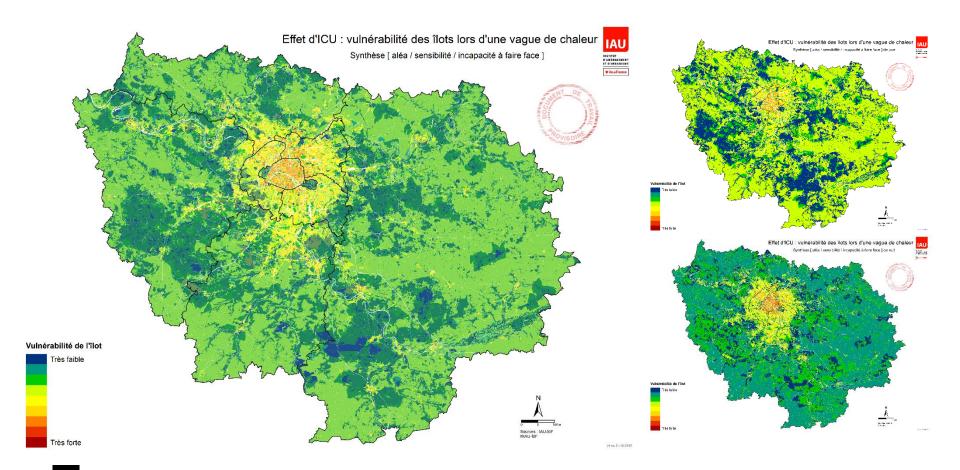


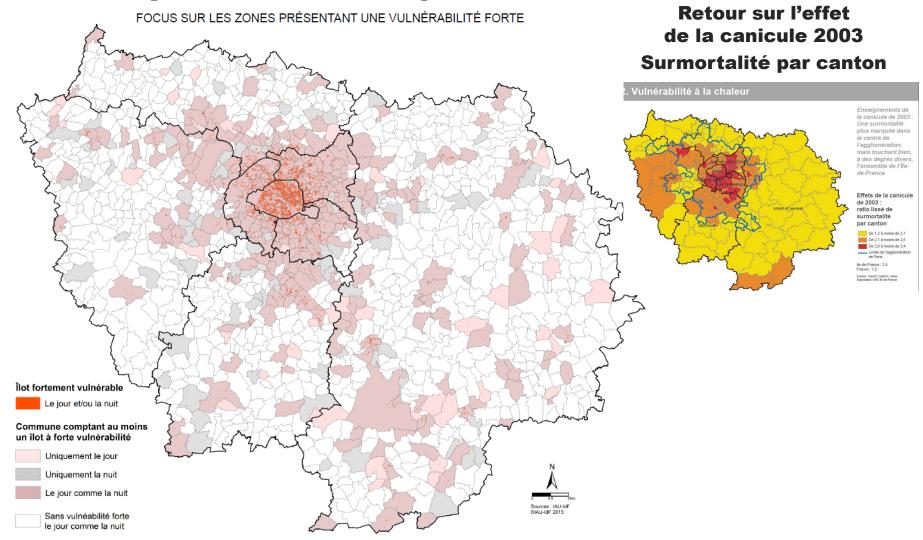

https://cartoviz.iau-idf.fr/?id_appli=imu&x=652471.7001216749&y=6864526.329255548&zoom=5

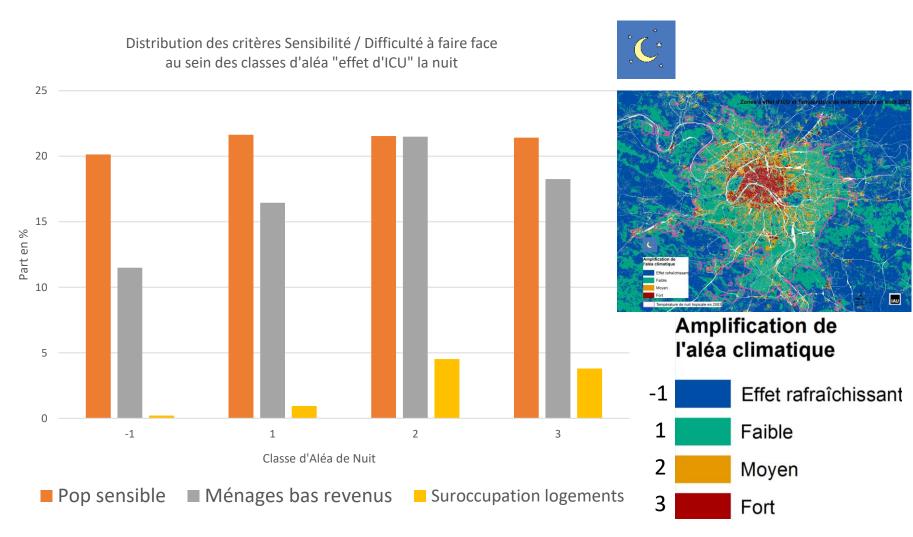



Répartition de la population résidant dans un quartier soumis à l'effet d'îlot de chaleur urbain ou en zone de fraicheur

Région : 1 Francilien sur 2 vit dans un îlot avec effet de chaleur




"Aléa"
Effet d'îlot de chaleur urbain (élévation des températures en ville)


"Sensibilité"
Fragilité des biens et des personnes lors d'une canicule

"Difficulté à faire face"

Déficit potentiel des ressources face au risque de canicule

ADAPTATION A LA CHALEUR

Vulnérabilité des îlots lors d'une vague de chaleur

Période nocturne

Vulnérabilité =

Aléa "effet d' îlot de chaleur urbain (ICU)"

Sensibilité à la chaleur des populations/habitat

Difficulté à faire face des populations

Vulnérabilité de l'îlot

NOTE DE VULNERABILITÉ

Îlot A îlot B 8 - Forte 8 - Forte Très forte

T Grand Paris Sud Seine Orge Séna

Température de nuit tropicale en 2003

ADAPTATION

"Aléa"

Effet d'îlot de chaleur urbain (ICU) (élévation des températures en ville)

NOTE D'ALEA EFFET D'ICU

<u>Îlot A</u>

îlot B

 $3 - Fort (14) \quad 3 - Fort (13)$

SA_vegbati

Plus de végétation sur le bâti (pieds d'immeubles, murs, terrasses, toits...)

SA_vegtoit

Potentiel de végétalisation des toitures terrasses

SA_ev

Plus de végétation de pleine terre : espaces verts, trames vertes...

SA recupsol

Potentiel de récupération d'eau en pied d'immeuble, amélioration de la gestion de l'eau

SA_recuptoit

// Potentiel d'usage de l'eau pour toitures végétalisées

SA_perm

Plus de sols perméables (rétention d'eau par le sol)

SA_eau

Plus d'aires de rafraîchissement de proximité : bassins,

•••• aires aquatiques, brumisateurs, miroirs d'eau, fontaines...

SA_arbre

Plus d'arbres pour plus d'ombrage

SA ombre

Plus de protections solaires du bâti : ombrières solaires, pergolas...

SA_albedo_sol

Augmentation de l'albédo des surfaces au sol (revêtements des chaussées...)

SA_albedo_toit

Augmentation de l'albédo des toitures terrasses et des toits

SA_materiau

Plus d'inertie des matériaux (confort thermique dans le logement...)

SA_trafic

Facilitation des circulations douces, encouragement TC, plus de fluidité du trafic

SA_clim

Moins de climatisation en mode sec, privilégier les systèmes collectifs (réseaux de froid...) ou individuels (VMC double flux, puits Canadien...)

SA_process

Récupération de la chaleur perdue par les procédés industriels (chaleur fatale)

SA_vent

Plus de ventilation de l'îlot (meilleure circulation des masses d'air, front urbain moins continu)

SA svf

Moins d'obstacles à la vue du ciel (accélération du refroidissement nocturne)

ADAPTATION

"Sensibilité"

Fragilité des biens et personnes lors d'une canicule

NOTE DE SENSIBILITE

Îlot A

2 – Moyenne (14)

îlot B

3 – Forte (16) (personnes

sensibles...)

SS_pollair

Diminution de la pollution de l'air (cofacteur de surmortalité) : diminution du trafic automobile et des vitesses de circulation...

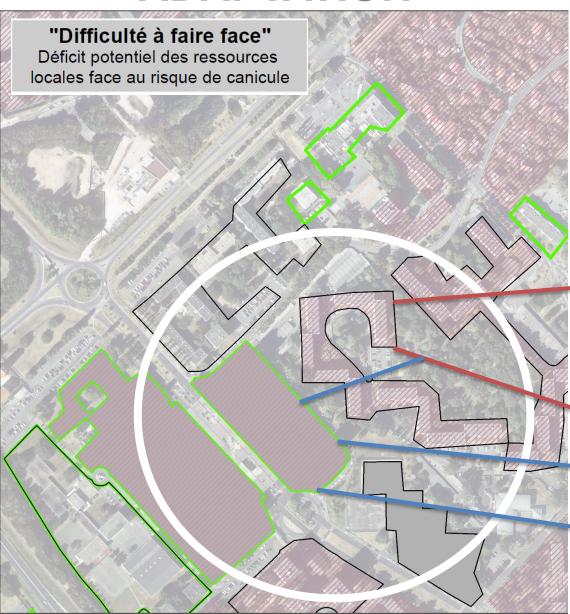
SS_bati

Isolation des bâtiments, ventilation naturelle, inertie et albédo des matériaux (façades, toits) à considérer attentivement

SS confort

Confort thermique au travail (bâti tertiaire, espaces extérieurs, enceintes de transports collectifs) à considérer attentivement

SS_sensible


Risque sanitaire lié à la proportion de personnes sensibles à considérer attentivement

SS_densite

Risque sanitaire lié à la suroccupation potentielle des logements à considérer attentivement

ADAPTATION

NOTE DE DIFFICULTE A FAIRE FACE

Îlot A

3 – Forte (8) (bas revenus...)

2 – Moyenne (4)

CI fusis

SI_frais

Apporter des solutions de rafraîchissement dans les cœurs d'îlots, les cours et pieds d'immeuble

SI medecin

Soutien à l'amélioration de l'offre en médecine généraliste (présence, accessibilité)

SI habitat

Soutien à l'amélioration des conditions d'habitat potentiellement difficiles (bas revenus, sur-occupation logement)

SI_urgence

Soutien à l'amélioration de l'offre en services d'urgences (présence, accessibilité)

SI chalex

Incitation à l'inscription volontaire au Registre nominatif confident des personnes fragiles (personnes âgées de 75 ans et plus)

SI_fragile

Accompagnement/sensibilisation à la mise en œuvre du Plan canicule pour les personnes fragiles (bas revenus)

SI evprox

Promouvoir l'îlot de fraîcheur que constitue l'espace vert ouvert au public de proximité ; identifier les possibilités de son ouverture exceptionnelle la nuit.

SI evcarence

Améliorer l'accessibilité aux espaces verts de proximité ouverts au public ; sinon identifier les possibilités de création d'un nouve îlot de fraîcheur de proximité

Merci de votre attention

erwan.cordeau@iau-idf.fr

https://cartoviz.iau-idf.fr/

Cop21_scenario1 https://youtu.be/vnZequHjFJY

Cop21_scenario2 https://youtu.be/sCC5Zz2-w84?t=5

Cop21_scenario3 https://youtu.be/aeoDn PmsNk

